Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy.

نویسندگان

  • Daniel A Dombeck
  • Leonardo Sacconi
  • Mireille Blanchard-Desce
  • Watt W Webb
چکیده

Although nonlinear microscopy and fast (approximately 1 ms) membrane potential (Vm) recording have proven valuable for neuroscience applications, their potentially powerful combination has not yet been shown for studies of Vm activity deep in intact tissue. We show that laser illumination of neurons in acute rat brain slices intracellularly filled with FM4-64 dye generates an intense second-harmonic generation (SHG) signal from somatic and dendritic plasma membranes with high contrast >125 microm below the slice surface. The SHG signal provides a linear response to DeltaVm of approximately 7.5%/100 mV. By averaging repeated line scans (approximately 50), we show the ability to record action potentials (APs) optically with a signal-to-noise ratio (S/N) of approximately 7-8. We also show recording of fast Vm steps from the dendritic arbor at depths inaccessible with previous methods. The high membrane contrast and linear response of SHG to DeltaVm provides the advantage that signal changes are not degraded by background and can be directly quantified in terms of DeltaVm. Experimental comparison of SHG and two-photon fluorescence Vm recording with the best known probes for each showed that the SHG technique is superior for Vm recording in brain slice applications, with FM4-64 as the best tested SHG Vm probe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy.

One of the main challenges in understanding the central nervous system is to measure the network dynamics of neuronal assemblies, while preserving the computational role of individual neurons. However, this is not possible with current techniques. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope ...

متن کامل

Optical recording of action potentials with second-harmonic generation microscopy.

Nonlinear microscopy has proven to be essential for neuroscience investigations of thick tissue preparations. However, the optical recording of fast (approximately 1 msec) cellular electrical activity has never until now been successfully combined with this imaging modality. Through the use of second-harmonic generation microscopy of primary Aplysia neurons in culture labeled with 4-[4-(dihexyl...

متن کامل

Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials.

Second-harmonic generation (SHG) has proven essential for the highest-resolution optical recording of membrane potential (Vm) in intact specimens. Here, we demonstrate single-trial SHG recordings of neuronal somatic action potentials and quantitative recordings of their decay with averaging at multiple sites during propagation along branched neurites at distances up to 350 mum from the soma. We...

متن کامل

Simultaneous optical recording of evoked and spontaneous transients of membrane potential and intracellular calcium concentration with high spatio-temporal resolution.

We have developed a system for simultaneous optical recording of transients of membrane potential and intracellular calcium concentration from mammalian brain slice preparations with high spatio-temporal resolution. Simultaneous recording was achieved by using two dedicated photodetectors together with two fluorescent indicators. Specifically, the calcium-sensitive dye Calcium Orange and the vo...

متن کامل

Validation of optical voltage reporting by the genetically encoded voltage indicator VSFP-Butterfly from cortical layer 2/3 pyramidal neurons in mouse brain slices

Understanding how behavior emerges from brain electrical activity is one of the ultimate goals of neuroscience. To achieve this goal we require methods for large-scale recording of the electrical activity of specific neuronal circuits. A very promising approach is to use optical reporting of membrane voltage transients, particularly if the voltage reporter is genetically targeted to specific ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 5  شماره 

صفحات  -

تاریخ انتشار 2005